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Hamiltonian dynamics of internal waves 

By D. MICHAEL MILDER 
Aret6 Associates, P.O. Box 350, Encino, CA 91316, U.S.A. 

(Heceived 18 May 1981 and in revised form 3 November 1981) 

The isopycnal elevation < of a stratified incompressible fluid constitutes a generalized 
co-ordinate in terms of which the dynamics can be described in Hamiltonian form. 
The description is complete, and no additional variables are necessary, when the iso- 
pycnal circulation vanishes and when there are no remote sources of flow. The 
Hamiltonian, Constructed in a co-ordinate system that coincides with the isopycnal 
surfaces, generates nonlinear equations of motion for < and its conjugate variable 
n which are formally exact for arbitrary displacements of the fluid and which are 
equivalent at lowest order to the usual linearized equations of internal waves. The 
appropriate scaling parameters for the nonlinearity are the isopycnal slope 05 and 
vertical strain a,Q which emerge as the expansion parameters of an explicit power- 
series representation of the Hamiltonian. 

1. Introduction 
Like many other ideal physical systems, an incompressible inviscid fluid obeys 

Hamilton’s principle, yet canonical formulations are rarely applied to fluid problems. 
One very good reason is that the Lagrangian fluid displacements, with which such a 
formulation traditionally begins, are in practical terms incompatible with an Eulerian 
description of the motion. This trouble persists ever1 when density stratification 
confines the flow to stably oscillating surfaces: Henyey (1981) has demonstrated that 
while a Hamiltonian formulation of stratified motion is achievable in Eulerian co- 
ordinates, it must involve explicitly a horizontal Lagrangian displacement variable 
or some equivalent, ‘non-physical ’, secularly growing quantity. 

Nevertheless, Hamiltonian formulations have been used in particular applications. 
To take advantage of the useful properties of canonical mode equations in the study 
of weakly nonlinear internal waves, Bretherton & Garrett (1969), and subsequently 
Meiss, Poniphrey & Watson (1979), have constructed a Hamiltonian around an 
Eulerian-based expansion of the Lagrangian fluid displacements, which are assumed to 
remain small. Miles (see his review article; 1981) and others have demonstrated that 
surface waves on an irrotational fluid can be described canonically in terms of the 
surface elevation and velocity potential without reference to internal Lagrangian 
displacements. 

When the isopycnal surfaces of an initially quiescent stratified fluid are displaced, 
a type of wave motion occurs that also admits a complete Hamiltonian formulation 
in terms of one scalar degree of freedom comprising the surface elevation above 
equilibrium 6, and its associated conjugate variable T ;  such a formulation is the topic 
of the present paper. The motion consists of ‘pure ’ internal waves for which the circu- 
lation in every isopycnal surface remains zero, and for which the flow vanishes a t  
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infinity. What makes a simplified Hamiltonian formulation possible in this case is a 
partially Eulerian description in which the co-ordinate surfaces coincide with the 
isopycnals; the term in the Hamiltonian containing the secular variable is, in these 
co-ordinates, proportional to the circulation, and simply vanishes. The remainder of 
the Hamiltonian consists of a potential energy that is exactly quadratic in c, and a 
kinetic energy that is quadratic in 7~ and which retains additional dependence on the 
three-dimensional gradient of 5, a dependence arising from the distortion of the 
coordinate system. 

The residual dependence of the Hamiltonian on the distortion gradient a< can in 
fact be viewed as the origin of the dynamical nonlinearity of the system. The com- 
p0nent.s of ac, namely the isopycnal slope V c  and vertical strain a,{, are the ordering 
parameters of a power-series representation for the Hamiltonian, 

H[5,n] = ,H+,H+ ...’ (1.1) 

in which the leading term ,H will be shown to generate the usual linearized equations 
of motion. The second term, responsible for the principal nonlinear corrections, will be 
exhibited as a product of a{ with quadratic physical quantities. From the foregoing it 
will be possible to conclude that Vc and a,y are a sufficient dimensionless measure of 
the nonlinearity of ideal internal waves, that is, that  the linearized equations are valid 
for lac( < 1,  whatever the ratio of 5 to other length scales describing the medium. 

The usual conservation laws for energy and horizontal momentum can be derived 
directly from Hamilton’s principle. The canonical momentum density - nV[ is 
quadratic in the field quantities and therefore differs from the local mass-transport 
rate, but upon volume integration the difference vanishes, as will be seen in 3 8. 

2. Outline of method 
Two properties of ideal internal wave motion in an inviscid, incompressible fluid - 

conservation of volume and the vanishing of circulation on each isopycnal- will be 
used to construct a complete kinematical representation of the motion in one scalar 
variable 5, the isopycnal elevation, and its time derivative g = ac/at. The dynamical 
equations for 5 will then be derived from a Langrangian function L, the kinetic energy 
minus the potential energy, 

through Hamilton’s principle, 
L r T - V ,  (2.1) 

6 Ldt = 0, (2.2) s 
in the form of the associated Euler-Lagrange equation 

$($) = s y .  SL 

The reduction from three velocity components U to one ‘generalized-co-ordinate ’ 
velocity [ comes about through the exploitation of two local differential conditions: 
the vanishing divergence of U, and the vanishing of vorticity normal to the isopycnal 
surface. The first condition is an absolute kinematical constraint, while the second is a 
hybrid condition, consisting of a first integral of the dynamics, supplemented by the 
initial condition of vanishing circulation. Part of the dynamics (the vanishing of shear 
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stresses) is therefore incorporated a priori as an equivalent kinematical constraint, 
while the remainder is allowed to operate through Hamilton's principle. In  $ 3 the 
reduction to one degree of freedom will be carried out in so-called isopycnal co- 
ordinates, where each fluid element, is assigned its horizontal position x and its 
equilibrium vertical position xo as independent variables; the instantaneous elevation { 
relative to xo will constitute the dependent variable. The flow constraints take a 
conveniently simple form in those co-ordinates, and as a consequence the kinetic 

energy 133 3,6) 

T = - 2 pU2d3x, (2.4) '1 
and the gravitational potential energy ( 5  4) 

V = g  pzd3.2: s (2.5) 

are readily expressed as functionals of [ and [. I n  turn, the nonlinear dynamical 
equation (2.3), worked out in $5,  has a relatively simple and physically interpretable 
structure. For these reasons, the isopycnal co-ordinate system seems naturally suited 
to ideal internal waves, notwithstanding its curvilinear and time-dependent character. 

The use of Hamilton's principle deserves some comment. In  previous treatments of 
irrotational surface waves (Miles 1981) its validity has not been taken for granted, 
but rather proved from the known solutions to the continuum equations. I n  the 
present application to internal waves, its validity must be established a priori. This 
can be done as follows (see Lanczos (1966) for a lucid and pertinent account). Like any 
conservative mechanical system subject to constraints that do no work, an incom- 
pressible fluid obeys 

t Z  

6 ( T - V ) d t -  (pU.GX)d3x = 0, 
s t :  s It1 

for an arbitrary allowed variation SX of the fluid particle trajectories X(t). Hamilton's 
principle is valid in a reduced representation { ( t )  only if setting [(tl) = [( t2)  = 0 causes 
the second (boundary) term above to vanish. However, the boundary term does not 
necessarily vanish in incompressible flow, because the volume (and circulation) 
constraints are non-holonomic, that is they establish a relation between g and U 
which cannot be integrated to provide a unique connection between y and the 
Lagrangian fluid displacements X. The usual method of dealing with a nonholonomic 
constraint of the form V .  U = 0, for example, is to impose i t  implicitly through an 
extra term containing a Lagrange multiplier q5, 

L' = L f  p$V.Ud3x, s 
so that once #I is defined by the condition S'L' = 0 for those variations s'y that violate 
the constraint, the displacements SX are formally arbitrary and can be set to zero a t  t, 
and t,. (Another term is required for the circulation constraint, but its multiplier can 
be shown to vanish identically when the circulation itself vanishes.) Apart from details 
pertaining to isopycnal co-ordinates, this argumeht constitutes the proof that the 
modified Lagrnngian L' satisfies Hamilton's principle. Curiously, tlie proof extends to 
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L itself, for when Q and U are expressed as functions of 6 and k by explicit use of the 
constraints, L' and L are identical for all variations of 6 and %. This implies that  L and 
L' can be used interchangeably in the dynamical equation (2.3),  the only difference 
being that L' carries extra variables and is subject to additional side conditions. 

This argument niight usefully be contrasted with Bretherton's application of 
Hamilton's principle to a perfect compressible fluid (1970). There, the material 
trajectories are unconstrained to arbitrary infinitesimal variations that vanish a t  
designated initial and final times, so that Hamilton's principle is valid without 
modification, and can be shown to imply the usual continuum dynamics. 

As will be seen in $ 5 ,  the extra multiplier $ takes the form of a layered potential 
playing an essential role in the connection between U and t. This dual function for c j  

makes L' actually more convenient for deriving the conjugate variable 

SL' n = -  
8< ' 

and for evaluating the nonlinear terms in the dynamical equation for ir E an/& 

The Hamiltonian form of the dynamical equations, 

. 6H . SH n = -- 
86 ' 6 = -  877 ' 

is obtained when all quantities in the Hamiltonian functional 

(2.9) 

(2.10) 

H [ [ , n ]  3 {nd3x-L (2.11) s 
are expressed in terms of 6 and T .  This representation, favoured in the study of weakly 
nonlinear internal waves and useful in the discussion of conservation laws (see 3 8) will 
be derived out to leading nonlinear order in 9 7.  

3. Isopycnal co-ordinates 
Each fluid element will be labelled by its two-dimensional horizontal position x and 

its density p, or equivalently, by its equilibrium height zo, where&,) is the equilibrium 
stratification profile. The co-ordinates (x, t ,  zo) define the isopycnal surface (z,,), whose 
instant,aneous elevation 

5(x, t ,  zo) = z(x, t ,  20) - 20 (3.1) 

is one of the dependent variables. The partial derivatives V = a/ax, 8, = a/&,, and 
a/at  are defined at  fixed z ,  and follow the surface, so that they differ from their Eulerian 
counterparts according to 

(3.2a, b )  
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These equations need not be referred to again, except for (3.3), in the form 

d3x = j(x, t ,  x 0 )  d x  dxo, j 1 + a[/az0, (3 .4~2,  b) 

relating volume to  projected isopycnal area dz. The Jacobian j contains the dynamical 
variable 6 and is just the distorted layer thickness, or one plus the vertical strain. The 
total time derivative of a quantity makes use of the horizontal (not tangential) 
velocity u = d x / d t ,  

d a  
- = - + u . V ,  
dt at (3.5) 

and being an invariant is the same as the ordinary total time derivative, as one can 
verify from (3.2).  The vertical velocity is related to [ by 

Conservation of volume can be expressed in either of the equivalent forms 

v . j ~  + as[ = 0, (3.7a) 

a j  d j  - + v . j u  at = -+jv.u at = 0. (3.7b) 

It is worth emphasizing that p, being a function only of zo, satisfies ap/at = 0 and 
Vp = 0. The vertical gradient of p is non-vanishing, but in isopycnal co-ordinates is 
independent of x and t ,  so that  

defines a stability frequency N that depends only on zo. 
Isopycnal coordinates have many of the familiar attributes of streamlines and 

stream surfaces in steady flow. These include conservation of circulation, a property 
which takes the form 

W ( Z 0 )  N2(20) = - %P (3.8) 

C +  i2 d x  = const. (3.9) s 
in the presence of rotation a t  angular rate $sZ around a vertical axis when the circu- 
lation contour is on an isopycnal. Here 

c = (dx.u+wdz) = d x . ( u + w V [ ) ,  

a = u + w v c ,  

w = v x a ,  

dx(w -t Q) = const., 

f $ 
so that in terms of 

and 

the theorem implies 

s 
which, combined with volume conservation in the form 

gives locally 

j d x  = const., s 
a63 - = 0, D = j - y w  + Q). 
at 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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In  isopycnal co-ordinates the local conservation of potential vorticity 6 is stated in 
terms of a layered vorticity w formed from the isopycnal curlV x , applied to the 
associated 'dual' velocity B, which, except for a scale factor differing slightly from 
unity, is the velocity component instantaneously tangent to the surface. 

A canonical treatment of the general case requires the introduction of a Lagrange 
multiplier p to maintain the constraint (3.14) in a term w d p l d t  added to the kinetic- 
energy density. The variables u,p form a canonical pair, but p is a secularly growing 
quantity obeying 

dP 
- = $ 9  dt 

(3.15) 

where $ is a 'stream' potential representing the vortical part of the velocity, 
u, = j - l S  x V$ (2 is the unit vertical vector). The variable p is 'non-physical' in the 
sense that its values can be altered by the imposition of an arbitrary initial condition 
p(x, zo, t o )  without consequence for the fluid trajectories. As Henyey has shown (1981), 
the general Hamiltonian cannot be constructed without the two variables (w,p)  or 
their equivalent, one of which must be 'non-physical'. 

However, the special case of vanishing isopycnal vorticity, which can hold when the 
co-ordinate system is not rotating, can be formulated without the extra variables. In  
t'his case the dual velocity ii can be represented on each layer by a single scalar 
potential 4, 

ii = vq5, (3.16) 

and indeed with a little algebra (3 .6 )  and (3.1 1) can be rewritten in terms of 04 and [as 

w = [1+(V!y- ' ( [+ i i .VC) ,  

u = B-wV[, 

(3.17) 

(3.18) 

so that once the necessary connection between q5 and [is established by means of the 
incompressibility equation (3.7u), the kinetic energy can be obtained as a unique 
functional of [ and 5. In the derivat>ion, to be completed in § 6, the following relations 
will be helpful : 

u2+w2 = u.a+w[ (3.19a) 

= G + [ t  +(V[)21-"[2-(ii.V[)2]. (3.19b) 

4. Potential energy 

extending from 21, up to zs a t  a free surface is 
The gravitational potential energy per unit horizontal area in n column of fluid 

with isopycnal labelling, z = zo + 5, g dp = p N 2  dzo ,  this becomes 

Terms linear in 6 vanish after integration over x because of volume conservation, 

c d x  = 0, s 
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so that the available potential energy can be recognized as 
n A n  

Note that V is exactly quadratic in both surface and internal elevations C, with field- 
independent coefficients ps and pN2; the buoyancy co-ordinate forces are purely linear 
in C, and the nonlinear dynamics will have their origin in the kinetic energy. 

5. Lagrange's equations of motion 
The modified Lagrangian (2.7) has the isopycnal form 

the multiplier $ enforces the compressibility constraint and allows L' to remain 
stationary to variations of u that are independent of variations o f t .  Variations of w 
are related to variations of u, 5 and [ by 

6w = S [ + V ~ . s u + U . V S ~ .  (5.2) 

Stationarity of L' to variations of $ merely reproduces the compressibility constraint, 
while stationarity to variations of U, with the help of 

and of 

implies 

SjS(U2 + w2) = ju . su + j w v g .  su 
= ja . su, 

$SO .ju = v.  $jsu -jvq5. su, 
j(6 - V$) . su = 0, 

so that $ is identical to the layered potential introduced previously to represent 6, 
which is constained to be irrotational. 

The conjugate variable 7r = SL/S( can now be evaluated through the variation of 
L' with $ and u fixed; this is, upon partial integration over zo, 

SL' = [jwS[ + $ a, St] p ax dz,  J 
where the boundary terni occurring at  the upper surface zo = zs has been retained to 
account for variations that occur when the surface is free, S[, $: 0. The conjugate 
variable is therefore 

(5.7) 
This equation indicates that pq5 is vertically continuous, and it establishes a dynamical 
connection among the values of pq5 on different layers. When the upper surface is free 
its motion is governed by the distinct degree of freedom (6, nS) ,  with 

77 = jpw - a,p$. 

77s = p s $ s ,  (5.8) 
a degree of freedom that incorporates the additional surface potential energy term in 
(4.3). The equation above resembles the known result for surface waves on an irro- 
tational fluid (Miles 1981), except that the surface velocity potential has been replaced 
here by a stratified potential. 
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The variational derivative necessary to complete the equation of motion is SL/Sy,  
which is the same as 6L'/6c with u, g ,  and Q fixed. The variable terms are 

6[*j(u2 + w2)] = *(u2 + w2) sj + j w u  . vsc 
6(QV .ju) = $0. (USj), 

sj = a,sc, 

(see ( 5 . 2 ) ) ,  

- 8(&N2cz) = - N2@c, 
where 

and after partial integration these yield 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
6L 
- = - / ~ [ N ~ { + V . j ~ w ] + a , p [ u . ' i ' Q - $ ( ~ ~ + w ~ ) ] .  sc 

The corresponding equation of motion is then 

7j+pN2{ = -pV.juw++a,p{(vQ)2-[1+ (Vt;)2]W2}. (5.13) 

Here the nonlinear terms have been put on the right-hand side, and the last term has 
been reworked into symmetrical form with the help of (3.6), (3.17) and (3.19). 

Vertical gradients of inertial density, insofar as these may be important, occur in the 
last term above, and are conveniently measured by an inverse Boussinesq length scale 

b(2,) = -p-la2p = ,lr2/y. (5 .14a,  b) 

Direct evaluation of the term in question yields 

bp[fr(u2 + 202) - u . VQ]+ pw a j p t  - PU . v a, Q (5.15) 

(see (3.7), (3.16), (3.18)), which can be combined with 

(5.16) 

derivable from (3.7) and (5.7),  to produce an unexpectedly simple variant of the 
equation of motion, 

(5.17) 
an 
-+pN'c  = +bp(U2+w2). 
at 

I n  the Boussinesq approximation, b = 0, the production rate of conjugate momen- 
tum n following a material point is proportional to minus the elevation. Because the 
term accompanying b is quadratic in the flow quantities, the linearized equation auto- 
matically obeys the Boussinesq approximation; however, as will be seen in § 6, a term 
containing b survives in the linearized approximation for n as a functional of [. 

6. Relations among the kinetic variables 
The modified Lagrangian yields the exact equations of motion (5.7),  (5.13) without 

recourse to a complete representation of L as a functional of 6 and [. The equations are 
not formally complete, however, until the quantities Q ,  u, and w appearing in (5.13) 
can be specified as functionals of g .  The necessary relation is supplied by the incom- 
pressibility equation (3 .7a) ,  V. ju+a, [  = 0, applied to (3.18) in the form 

ju = jii - q(g  + ii .VC) 05, (6.1) 
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where 7 is an abbreviation for 

substitution into ( 3 . 7 ~ ~ )  then yields 

7 = j[ 1 + (VC)2]-1; 

v2, # +d, * 4 = o .  
Here the two-dimensional ‘Laplacian ’ operator is defined by 

v; = v .jv - v.  (TVC) (VC). V)  (6.4) 
where V is understood to  operate on everything to  its right unless contained within 
parentheses. The operator d: and the related operator dz are defined as 

a, = a,-T/(vg).v) 

a,* = a, - v.  (VVC), 
( 6 . 5 ~ )  

(6 .5b )  

expressions that are mutually anti-adjoint under volume integration in the sense that 

Apart from a scale factor, d, and d,* are derivatives normal to the surface, and d z t ,  
the source term for # in (6 .3) ,  is a normal dilation rate. The ‘Poisson’s equation’ for # 
is to be solved separately in each layer under the assumption that 4 = 0 implies # = 0, 
that is, for the boundary condition # -+ 0 a t  1x1 -+ co. Formally, the unique solution is 

(6 .7)  I$ = -v- * d x - )  
V;2 being the Green function associated with V i .  For moderate isopycnal distortion 
V g 2  can be developed in an infinite series around the undistorted Green function 

(6.8) 
1 

2n 
v-2 = -log 1 x - XI] 

in powers of the distortion terms 

as 
v2, - v2 = v.  (a,[) v - v. {r(VC) (VC). V], (6.9) 

v,2 = v-2 - v - 2 (  v2 * -  V2)V-2+ ... . (6.10) 

This is a linear non-local functional in which the leading distortion coe%cient,s are 
a,C and 05, the latter appearing a t  second order. 

All the quantities forming the Lagrangian, including 6 = V# and w = [+ u .VC, are 
now expressible in terms of [ and 5. I n  particular, the canonical momentum (5 .7) ,  
rewritten with the aid of 

jzu = r([+a.vg) (6.1 1 )  

(see (3 .17) ,  (6.2) and ( 6 . 5 ~ ) )  in the form 

77 = TPt--dZ(P#L (6.12) 
can be given as 

77 = Tp[+d,pVG2d,*[. (6.13) 

Being a homogeneous quadratic functional of (with the variational derivative rt, the 
internal-wave Lagrangian must have the form 

(6.14) 

a form which is actually symmetric in g because V;2 is n self-adjoint operator which 
commutes with p ,  a layer constant. 
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Lagrange’s equation of motion (5.13), together with (6.13) above, completely 
specifies the dynamics. The usual linearized approximation can be recovered a t  once 
by setting the right-hand side Of (5.13) equal to zero and by setting q = 1, d, = d,* = a,, 
and Vg2 = V - 2  in (6.13)) i.e. 

77 = pg+azpv-2a,g+o(v[) a,[). (6.15) 

A substitution of the time derivative of this equation into (5.13), followed by appli- 
cation of V 2 ,  yields, to first order, 

[V2+(a , -b )az ]g+N2v2[  21 0. (6.16) 

The quantity b(z,) appearing above is the inverse Boussinesq length scale defined 
previously in (5.14). Although the Boussinesq approximation, b = 0, simplifies the 
equation slightly it is not essential in isopycnal co-ordinates because b is a layered 
parameter independent of 5. 

7. Hamilton’s equations for internal waves 
At nonlinear order ir becomes a complicated mixture involving c, V g ,  and so on, and 

it is preferable to solve for gas B functional of n and 5. Formally this is accomplished by 
Hamilton’s equations, 

r= - -  [= -  ( 7 . l a ,  b )  
SH . SH 
8C ’ 6n ’ 

with 

but in practice the Hamiltonian functional H is most conveniently constructed by 
deriving [(Y, n) first. This can be done by starting with (6.12) in the form 

Y = 7-lP-ll-n + d2(Pd)19 ( 7 . 3 )  

differentiating by dz, and equating the result to minus V$ $: 

or 

for short, The normal gradient of n / p y  is the source term in a three-dimensional 
Poisson-like equation for q5 in which a$ is a distorted Laplacian. This equation defines 
$ uniquely once the boundary conditions a t  z,, = zb,  zs are established; for internal- 
wave dynamics we take these to be rigid-wall conditions, [ = 0 and w = 0, and we 
write the solution of (7.5) incorporating the boundary conditions symbolically as 

d = -a,zd,*(n/Py), (7.6) 
with a g 2  representing the appropriate integral Green operator. Again, a+2 can be 
developed in an infinite series starting with the undistorted Green function 8 - 2 ,  

(7 .7 )  
where 

a 2  = V2+a, (a , -b) .  ( 7 . 8 )  

a*2 = 8 - 2  - a-y  a: - a 2 )  8-2 + . . . ) 
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Note that the Boussinesq approximation b = 0 converts 8 2  to the ordinary three- 
dimensional Laplacian. The required expression for [ in terms of 5 and 7r is now, from 
(7 .3) )  

(7 .9)  
7r g = [i-7-l(d,-b)a,2d;]-. 

P7 

This equation and (5 .13)  are a, canonical pair describing nonlinear internal waves. They 
are exact and closed, although (7 .9)  contains an integral operator a;2 that can be 
represented in its nonlinear features only as a series expansion in the isopycnal strain 
components (a ,  5, 05). The corresponding Hamiltonian functional 

(7 .10)  

is quadratic in n, but in its dependence on (a,<, 05) is likewise expressible only as a 
series expansion. Incidentally, the operator expression 

1 7P 

2 P7 
H", 4 = -1 [- - n p ( a ,  - b )  aG.2 a,* y-lp-ln + ~ 2 5 2 1  ax axo, 

K ~7-1- 7-1(a2 - b )  a;2 a,* 7-11 p-l (7 .11)  

appearing in the Hamiltonian above and forming the kinetic energy 

(7.12) 

is actually self-adjoint desgite its appearance, as can be shown from the commutation 
properties of d, and dz with p. 

One virtue of the Hamiltonian formulation is that the nonlinear terms in both 
field equations arise from a single functional H .  I n  the study of weakly nonlinear 
dynamics this allows the field equations to be truncated unambiguously a t  the same 
order without compromise of their canonical form. The series expansion 

H = ,H+,H+ ... (7.13) 

originates in the expansion of the operator K around its undistorted form, 

K = Ko+Kl+ ... , (7 .14)  

with all of the entities 7, d,, and ag2 contributing terms of various orders of a,g and 
VC. The quadratic Hamiltonian, responsible for the linearized dynamics, is 

(7 .15)  I 7r 
5, 7r] = (n[ 1 - (a ,  - b )  a-2 a,] - + p ~ y 2  dx dxo,  

P 

while the cubic term, inducing the leading nonlinear correction, is 

1 H K n l  = J M  1 a 2 g) (w: - t~:) + (vg) . wouol p ax az,. (7 .16)  

Here uo and wo are formal abbreviations for the linear field quantities 

(7 .17 a ,  b)  
n 

uo = v#o, w = - + ( a , - b ) # O ,  
O - P  

with 
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It is easily verified that functional differentiation of ,H reproduces the leading non- 
linear terms in both field equations (5.13)) (7.9).  We are therefore entitled to conclude 
that the isopycnal strain tensor ac = (a,[, V c )  is the scaling parameter for the non- 
linearity of the dynamics. As a corollary, the linearized equations, when applied to 
isopycnal co-ordinates, that  is, to elevation 5 relative to equilibrium as a function of 
equilibrium height zo, are valid for l a [ /  < 1 ,  whatever the ratio of 6 to other length 
scales describing the medium. 

8. Conservation laws 
In  the canonical formalism a particular conservation law is usually associated with 

an invariance, or symmetry, of the Hamiltonian (Hill 1951). For internal waves the 
obvious symmetries are the arbitrariness of time origin and horizontal co-ordinate 
origin, and these imply conservation of energy and horizontal momentum. Hamilton’s 
principle yields the conserved quantities directly, 

s Ldt = n S ~ d x d z ,  +(LSt) , 
st: s 1:: I:: 

when written as above to account for non-vanishing variations Sc a t  t = t , ,  t, and for 
changes in the temporal limits of integration. Under small arbitrary variations St,  6x 
in the time and co-ordinate origins, the left-hand side vanishes, while the right-hand 
side, dependent on the apparent variations 

S[= Qst+vf;.sx, 

st,, 2 = - St, 
takes the form 

(8.2a) 

(8.2b) 

For ideal internal waves the conserved quantity H i s  the ordinary total energy. If the 
present formalism can be extended to encompass waves in an ambient shear flow (see 
the comments in $ 9 )  H will undoubtedly have a more subtle interpretation, because 
it will continue to be conserved in stable or unstable flows. 

The connection between the canonical momentum density - nV[ and the ordinary 
mass-transport density jpu can be derived with the help of the relations 

= (az& - jpw) VC, (8.4) 

as 

Of the three terms contributing to the instantaneous mass transport, the first two are 
quadratic in the field quantities and account for whatever ‘Stokes’ streaming may be 
present a t  second order in the wave amplitudes. The second term vanishes upon 
vertical integration, unless the upper surface is free, in which case the surface quantity 
- ( P # V ~ ) ~  remains, while an equivalent term 
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also appears in (8.3) to account for surface-wave momentum (see (5.6)-(5.8)). The 
second term can therefore be associated with the Stokes streaming generated by 
surface waves. The third term is principally first-order in the fields, and can be 
identified with the instantaneous orbital flow; it vanishes upon horizontal integration, 
producing no neb mass transport. All of the mass transport is therefore accounted for 
by the conserved sum of internal and surface-wave momenta, 

Hamilton’s principle can be used in combination with an infinitesimal change of 
amplitude, 

to extract a relation that is not a strict conservation law, but rather a ‘virial theorem’ 
for time-average quantities. Because the nth term in the expanded Hamiltonian is a 
homogenous (n + 2)-power functional of 7-1 and 5 (or ag) the left-hand side of 

sy = €g, sn = €77, (8.9) 

has the form 

(8.10) 

(8.11) 

Under the assumption that the right-hand side of (8.10) remains finite, dividing (8.1 1) 
by t, - t ,  yields the limit, as t ,  -+ co, 

00 

2 ( T - V ) +  Z n(,T) = 0,  (8.12) 

where ( } denotes time averages. The mean kinetic and potential energies are therefore 
equal in the linearized approximation, as expected, while for weakly nonlinear 
motion they differ by approximately 4 (lT}. In  absolute value this term is bounded by 

llTl < 3T lay1 < 3(T+ V )  lay[, (8.13) 

n = l  

where lac/2 = (Vy)2+ (az(J2 (see (7.16)), so that 

I(T- V>l 6 w+ W l a C l ) ;  (8.14) 

i.e. in weakly nonlinear motion the average absolute strain Jagl, times $, is an upper 
bound to the relative mean difference of kinetic and potential energy. 

9. Discussion 
In  the foregoing treatment of internal-wave dynamics several interesting regimes 

of stratified flow have been excluded: inertial waves and free isopycnal circulating 
flow, for fundamental reasons; and stratified shear flow coupled to, but not generated 
by, isopycnal motion, for reasons of convenience. Nevertheless, in the restricted 
regime of ideal internal waves, the canonical formulation has achieved the following 
new results: nonlinear equations in one degree of freedom that are closed in terms of 
the fields and associated operators, and a format in which the linearized equations are 
good for arbitrary amplitude so long as the displacement gradients are small. 

The vanishing of the layered potential 4 a t  infinity is not required by the canonical 
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approach, andin principle an arbitrary term Q' satisfying 0; Q' = 0 could be superposed 
on each layer. The added current 6' = VQ' would approach a vector constant u,(z,) 
a t  large distances from the region disturbed by isopycnal motion, and would therefore 
represent a background stratified shear flow. The assumption u, = 0 is a particular 
ad hoc assignment of values, necessary only to keep 4' bounded. However, when non- 
zero values of u, are allowed, the definition of a co-ordinate system stationary with 
respect to the undisturbed medium is no longer meaningful. Very likely, in a descrip- 
tion of the dynamics of stratified shear flow, this arbitrariness will have to be taken 
into account in the definitions of the variables g ,  Q and 7 ~ ;  that is, a Galilean- 
invariant version of the present formalism will have to be devised. 
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